A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems

نویسندگان

  • Youssef Marzouk
  • Dongbin Xiu
  • Jan S. Hesthaven
چکیده

We present an efficient numerical strategy for the Bayesian solution of inverse problems. Stochastic collocation methods, based on generalized polynomial chaos (gPC), are used to construct a polynomial approximation of the forward solution over the support of the prior distribution. This approximation then defines a surrogate posterior probability density that can be evaluated repeatedly at minimal computational cost. The ability to simulate a large number of samples from the posterior distribution results in very accurate estimates of the inverse solution and its associated uncertainty. Combined with high accuracy of the gPC-based forward solver, the new algorithm can provide great efficiency in practical applications. A rigorous error analysis of the algorithm is conducted, where we establish convergence of the approximate posterior to the true posterior and obtain an estimate of the convergence rate. It is proved that fast (exponential) convergence of the gPC forward solution yields similarly fast (exponential) convergence of the posterior. The numerical strategy and the predicted convergence rates are then demonstrated on nonlinear inverse problems of varying smoothness and dimension. AMS subject classifications: 41A10, 60H35, 65C30, 65C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient Bayesian inference approach to inverse problems based on adaptive sparse grid collocation method

A new approach for modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adap...

متن کامل

An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method

A new approach to modeling inverse problems using a Bayesian inference method is introduced. The Bayesian approach considers the unknown parameters as random variables and seeks the probabilistic distribution of the unknowns. By introducing the concept of the stochastic prior state space to the Bayesian formulation, we reformulate the deterministic forward problem as a stochastic one. The adapt...

متن کامل

Inverse Problems in Heat Transfer

17.1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 17.2THE INVERSE HEAT-CONDUCTION PROBLEM A SPECTRAL STOCHASTIC APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 17.2.1Introduction: Representation of random variables . . . . . . . . . . . 9 17.2.2The stochastic inverse heat-conduction problem (SIHCP): Problem definition ....

متن کامل

A stochastic collocation approach for efficient integrated gear health prognosis

Uncertainty quantification in damage growth is critical in equipment health prognosis and condition based maintenance. Integrated health prognostics has recently drawn growing attention due to its capability to produce more accurate predictions through integrating physical models and real-time condition monitoring data. In the existing literature, simulation is commonly used to account for the ...

متن کامل

A Computational Statistics Approach to Stochastic Inverse Problems and Uncertainty Quantification in Heat Transfer

As most engineering systems and processes operate in an uncertain environment, it becomes increasingly important to address their analysis and inverse design in a stochastic manner using statistical data-driven methods. Recent advances in computational Bayesian and spatial statistics enable complete and efficient solution procedures to such problems. Herein, a novel framework based on Bayesian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009